Distributed Deep Learning Training

Aaron Harlap aaron@determined.ai

Talk Outline

- Current Deep Learning tool chain.
- Why do we need distributed multi-machine training?
- How does distributed training work?
- Challenges and effective solutions.

Team of one

Relatively small experiments on single machine

Relatively simple infrastructure to manage

Small and simple

No need to share resources or productionize results

Simple experiment tracking is sufficient, e.g., results/lstm.dataset.batchsize-16.epochs -500.opt-adam.log

As scalability kicks in

Challenges surface

hyperparameter search

Resource/GPU sharing and infrastructure management

Experiment tracking for reproducibility and collaboration

Repetitive and time-consuming work in training, e.g.

Model deployment in production e.g., on edge devices

What kind of AI infrastructure is needed to address scalability?

Determined AI provides scalable deep learn infrastructure

Available Today

In Development

Deep Learning is Computationally Expensive

Two Distinct Eras of Compute Usage in Training AI Systems

Training Time Impacts Productivity

- Experimenting with new datasets and/or models is bottlenecked by training time.
 - Imagine waiting for 2 days every time you compile your program.
- Limit on how fast a single machine can go.
 - E.g., Fine-tuning on a large dataset takes 7+ days on a single machine.

Distributed Training Reduces Training Time

Hours to Train FasterRCNN

Single Machime 8 Machines

- Machines: GCP w/ 8 V100 GPUs
- Dataset: Coco (2014)
- Target accuracy: 37.8% mAP

How does Distributed Training Work?

How Deep Learning Models Learn

Forward Pass - Make a Prediction

Backward Pass - Update Solution Depending on Error

Distributed Training: Data Parallelism

- Data Parallelism is the most common technique for distributed training.
 - Separate copy of model on each machine

Machine 1

Machine 2

Machine 3

-9

+3

After communicating all machines have the exact same model parameters.

Communicate Updates

Overhead is from Communication

How is the Communication Performed?

Ring All-Reduce vs. Parameter Server

- Ring All-Reduce
 - Most common approach (easier to implement today).
 - Optimal bandwidth usage.
- Parameter Server
 - More efficient for sparse updates (e.g., classical ML).
 - Better suited for supporting non-traditional network topologies.
 - Efficient support for a variety of synchronization schemes.

Two Categories of Challenges in Distributed Training

- Configuration Issues
 - Setting up machine connections.
 - Fault Tolerance.
 - Distributed data. Ο
- Performance Issues
 - Efficiently utilizing interconnects. Ο
 - Reducing communication overhead. Ο

Current tools (TF, PyTorch) make you do this yourself.

Current tools (TF, PyTorch) don't solve many of these.

Distributed Training Made Easy @ Determined Al

- Solve Configuration Issues
 - Automatic cluster configuration
 - Fault tolerance management
 - Data automatically partitioned Ο
- Performance optimization Reducing the communication overhead

Leveraging Characteristics of Deep Learning

- Reducing communication is common problem in distributed systems.
- Deep Learning is a known workload, we can take advantage of this!
- Characteristics of deep learning workloads:
 - Backwards pass is computationally intensive and generates communication.
 - Iterative in nature.
 - Output of communication is reducible.

Overlapping Computation and Communication

Compute Backward Pass

Wait Free Back Propagation

Prepare for Next Forward Pass

Up to 2X Faster than Horovod

Accuracy vs. Training time on 8x8v100 GCP (64 GPUs)

Determined Al

4.5

Horovod

Training Time

- 8 Machines w/ 8 V100 GPUs each
- Dataset: Coco (2014)
- Target accuracy: 37.8% mAP

Wait there is more: Model Parallelism

Machine 1

Machine 2

Machine 3

Thank you Learn more at determined.ai

chat with us at hello@determined.ai

